
Chapter 3.

The Transport layer

(Preliminary Version)

3.0. Abstract.

In this chapter, the role of the transport layer is explained. Actual implementations of the transport layer both in the OSI and the TCP/IP world is presented.

In two sidetracks the principles and the implementation of error correcting protocols is explained.

Sidetrack 3.1.
Error detection and correction.

Transmission errors can occur in every system. Their origin and their statistical distribution is function of the transmission technique: classical communications over wires will mainly suffer from electromagnetic interference which cause relatively frequent (10-6) randomly distributed errors while optical systems have very few random errors (10-13) but can suffer from long bursts of errors when a laser fails and is automatically replaced by a new one.

Wireless communications, such as cellular digital telephony (GSM) have much worse errors rates (10-3) and require specific error correcting techniques.

Error Detection.

Most error correction techniques work with discrete blocks of data, which are handled individually. The optimal block length depends upon the probability of errors, the overhead per block for identification and error detection, and the overhead per erroneous block. Practical considerations such as the storage capacity needed to hold blocks during their transmission could also limit their length. When messages are longer than the maximum block length, they are split into the appropriate number of blocks, but when they are shorter than the optimal block length, most often, it is the block length, which is adapted.

Error detection and correction is based upon redundancy: when a block contains k data bits, it is extended with r redundant bits, which are function of the k data bits.

This means that only 2k different blocks of k+r bits can be generated. As data bits as well as the redundant bits can be affected by transmission errors, all 2k+r possible blocks can be received. If the received block belongs to the set of the 2k "legal" blocks which can be generated, it is believed that no transmission error has occurred, as it is hoped that no legal block will be changed into another one. If the received block does not belong to the set of legal blocks, a transmission error has certainly occurred.

Many different algorithms are being used to compute the redundant bits. They pursue a good compromise between the computer time needed to compute the redundant bits and the probability that errors will go undetected. The optimal choice depends obviously on the error statistics of the transmission system. One of the simplest algorithms, the checksum, consists in slicing the block in groups of 8, 16 or 32 bits and to compute the sum modulo 28, 216 or 232 of all the slices.

The 12 digit bank account numbers in Belgium are designed along the same principles: the true account number has 10 digits, two redundant digits are obtained by computing the remainder of the division by 97 of the 10 digits account number. When a 12 digit number is entered, the 2 last digits are computed from the 10 first and compared with the actual last digits; if they are different the entered number is erroneous. It can be proven that the modulo 97 check digits allow to detect all single digit errors and some of the possible two digit errors.

Error correction by retransmission.

The principle of error correction by retransmission is extremely simple: when the receiver detects an error in a block, it rejects it and the transmitter has to retransmit. This implies a connection-oriented protocol, as both sender and receiver have to keep track of which blocks have been transmitted, received and acknowledged.

In the simplest implementation of this principle, schematically described in fig.3.1.1, the transmitter sends one block and waits until it receives an acknowledgement message (ack) before sending the next block. If no ack comes, after a predefined delay, the transmitter retransmits the unacknowledged block. In order to avoid ambiguities in case of errors in the ack message, data blocks should be numbered, but a modulo 2 numbering, requiring only 1 bit overhead per block is sufficient. This implementation however makes a poor usage of the available transmission capacity, especially on long lines, as between successive blocks the transmitter has to wait for full round trip propagation.

[image: image1.wmf]Time-out

Data

Ack

A

B

Fig.3.1.1 Simple ack transmission protocol.

Error correction without retransmission.

The Hamming distance between two blocks of the same length is equal to the number of bits, which do not match. When an erroneous block has been received, its Hamming distance from all the legal ones is computed. If one of these distances is shorter than all the others it is likely that this corresponds with the original block, and the error can be corrected without retransmission of the damaged block. This is called "forward error correction".

To clarify the differences between error detection and forward error correction two very simple examples will be analysed.

In the first example, shown in fig. 3.1.2, k = 1, r = 1 and the redundant bit is set equal to the data bit.

The two legal blocks are 00 and 11.

[image: image2.wmf]00

01

11

10

Fig.3.1.2. Error detecting redundant code.

The erroneous blocks, which can be received, are 01 and 10. The Hamming distance of each of these blocks to the legal ones is always 1 and therefor no forward error correction is possible, only error detection can be performed.

In the second example, shown in fig.3.1.3, k = 1, r = 2 and both redundant bits are set equal to the data bit. The two legal blocks are 000 and 111.

The erroneous blocks which result from a single bit error are all located at a Hamming distance 1 from one of the legal blocks and 2 from the other, which means that error correction is possible.

From these examples it seems that forward error correction requires an enormous level of redundancy. To find the required level of redundancy one should consider the set of blocks at a Hamming distance no greater than 1 from a legal block. There are k+r+1 such blocks (the original block plus all those with a single bit error). To make forward correction of 1 bit errors possible, the 2k such sets should be disjoint, or 2k * (r+k+1) <= 2 k+r.

Fig.3.1.4 gives the maximum value of k for different values of r. It shows that for meaningful block lengths the redundancy is not prohibitive.

Although forward error correction could be used in connectionless protocols, it is seldom used in classical data transmission systems as, for reliable data communications, connection oriented error correction schemes with retransmission of erroneous blocks are usually more performing. Forward error correction on a continuous stream of bits rather than on discrete blocks (Viterbi encoding) is used in high performance modems.

Redundant bits (r)
Data bits (k)
% redundancy

2
1
200

3
4
75

4
11
36

5
26
19

6
57
11

7
120
6

8
247
3

Fig.3.1.3. Required redundancy for single bit forward error correction.

[image: image3.wmf]001

011

111

101

000

010

110

100

Fig.3.1.3. Error correcting redundant code.

Sidetrack 3.2.
Sliding window protocols.

In sidetrack 3.1, error correction by retransmission was introduced. It was, however, shown that keeping the transmitter waiting for an acknowledgement before transmitting the next block resulted in poor usage of the transmission capacity, especially on links with high throughput and long propagation delays, such as satellite links.

Much more efficient protocols, called "sliding window protocols" are used in most modern systems. Many such protocols exist, and differ from each other by the way errors are handled. The "go back n" variety works as follows:

The operation of the transmitter is based upon a circular buffer (fig 3.2.1) which can contain n blocks.

This buffer is controlled by means of three modulo n pointers, Vw, the write pointer, Vs, the send pointer and Vack, the acknowledge pointer. Initially, pointers Vw and Vs have the value 0 and Vack the value n. When an application has a data block to transmit and if the circular buffer is not full, it is entered at the location corresponding to the value of Vw and this pointer is incremented by one.

When a block can be transmitted and if the circular buffer is not empty, the block at the location corresponding to the value of Vs is transmitted and Vs is incremented by 1. Each transmitted block carries a number Ns equal to the value of Vs when transmission occurred.

The receiver has a modulo n counter Vr which contains the number of the next expected block. When a block is received, its Ns number is compared with the contents of Vr and, if equal, Vr is incremented by 1 and an acknowledgement, carrying a number Nr equal to the new value of Vr, is send back. Otherwise, a negative acknowledgement with Nr equal to the non-incremented value of Vr, is send back.

When the transmitter receives an acknowledgement (positive or negative) it sets its Vack pointer to the value Nr - 1, and, in case of a negative acknowledgement, it resets its Vs pointer to the value Nr.

The transmitter buffer is empty when Vs = Vw and it is full when Vw = Vack.

From these explanations it appears that the sender can send as much as n blocks before receiving any acknowledgement, but that blocks are kept in the circular buffer after transmission until they have been acknowledged. An acknowledgement message can acknowledge several consecutive blocks, and can be included in data blocks travelling the opposite direction. In case of very long propagation delays, such as those encountered with satellite links, the window size, n, will be chosen very large, in order to avoid stopping the transmitter while waiting for acknowledgements. When a block out of sequence is received, all blocks starting with the first missing one are retransmitted ("go back n" policy). This policy can be very inefficient in case of a large window, and therefore, more complex protocols allowing selective retransmission of missing blocks have been designed, but these protocols require not only buffering on the transmitter side but also at the receiver side.

One could also observe that the simple error correcting protocol with positive and negative acknowledgements presented in sidetrack 3.1 is in fact a sliding window protocol with a window of size 1.

[image: image4.wmf]Vw

Vs

Vack

Fig.3.22. Sliding window protocol.

J.TIBERGHIEN – Teleprocessing Chap.3 (prel) Page 1 of 6, printed 04/27/98
J.TIBERGHIEN – Teleprocessing Chap.3 (prel) Page 2 of 6, printed 04/27/98
J.TIBERGHIEN – Teleprocessing Chap.3 (prel.) Page 3 of 6, printed 04/27/98

